Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

By Holly J. Niner1, Jeff A. Ardron, Elva G. Escobar, Matthew Gianni, Aline Jaeckel, Daniel O. B. Jones, Lisa A. Levin, Craig R. Smith, Torsten Thiele, Phillip J. Turner, Cindy L. Van Dover, Les Watling and Kristina M. Gjerde / Frontiers in Marine Science



Figure 1. The mitigation hierarchy as applied in its intended sequence and the challenges posed by deep sea application.


Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs) for another (e.g., abyssal nodule fields) have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL) of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate). We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets.


The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics), play an essential role in regulatory services (e.g., carbon sequestration) and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement. If accepted, further agreement on how to assess residual losses remaining after the robust implementation of the mitigation hierarchy is also imperative. To ameliorate some of the inter-generational inequity caused by mining-associated biodiversity losses, and only after all NNL measures have been used to the fullest extent, potential compensatory actions would need to be focused on measures to improve the knowledge and protection of the deep sea and to demonstrate benefits that will endure for future generations.


Introduction


The Potential Impact of Deep-Sea Mining


There is increasing interest worldwide in the potential for deep-sea mining to serve as an engine for “Blue Growth” and to drive sustainable economic development (European Commission, 2012; Wedding et al., 2015). Most deep-sea ecosystems targeted for mining have some combination of ecological characteristics that make them particularly sensitive to anthropogenic disturbance, such as being largely pristine, highly structured, very diverse, dominated by rare species and (extremely) slow to recover. Accordingly, there is increasing concern that the direct and indirect impacts of mineral extraction in the deep sea will result in a significant loss of biological diversity (herein referred to as biodiversity) (CBD, 1992; Wedding et al., 2015). Direct impacts occur through the removal of target material and associated organisms within the mine site and include the destruction of biota as well as habitat loss, fragmentation, and modification through altered mineral and sediment composition, geomorphology, and biogeochemical processes (Ellis, 2001; Van Dover, 2014; Jones et al., 2017). Potential indirect impacts on the seabed and water column both within and outside of the directly mined area include the smothering of habitat and biota, interference with feeding activities, and the release and spread of nutrient-rich and toxin-laden water from the generation of plumes (Ellis, 2001; Boschen et al., 2013). Additional potentially harmful diffuse effects include those from light, noise and electromagnetic disturbance (Van Dover, 2014; MIDAS, 2016). The scale over which these indirect impacts are likely to occur is largely unknown and most of the effects remain unstudied. The three mineral resource types commonly considered for deep-sea mining each have their own specific environmental contexts, which have each been the subject of targeted scientific study and some proposed management measures—polymetallic nodules (nodules), cobalt crusts (crusts), and seafloor massive sulfides (SMS) associated with hydrothermal vents (vents). However, despite the considerable differences among these resources and the types of ecosystems within which they are located, the scales implicated by deep-sea mining suggest that exploitation of all three resource classes will yield significant biodiversity loss, indicating that a precautionary approach is warranted (Levin et al., 2016).


Read the full article here